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Abstract

In 2001 Florida adopted the first statewide wind specific building code in the US, man-
dating technologies like storm shutters and roof straps. Aggregate insurance loss data
suggests that the code led to reduced damages in subsequent hurricanes. Whether
benefits are wholly internalized by the individual homeowner, or spill over to adjacent
properties through reduced airborne debris however remains an open question reserved
for individual level observation. This paper applies high resolution areal imagery of
Bay County, FL acquired two months after Hurricane Michael to detect individual resi-
dential temporary roof covers—a proxy for damage made additionally reliable through
the USACE “Blue Roof” program providing free tarps to damages homes. Exploit-
ing plausibly exogenous changes in wind-related building qualities, we find that homes
built just after the wind code went into effect were less likely to require temporary roof
protection than those built just before, but that being surrounded by homes built to
code further reduced the emergence of a tarp. Results suggest that welfare gains from
wind strengthening investments are in part derived from the the collective nature of
public policy interventions.
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1 Introduction

Southeastern coastal US counties are projected to encounter a hurricane with winds greater
than 74mph every 5-16 years (NOAA, 2018), and an average loss of $10,089 per home (Sim-
mons et al., 2018). Pushed by the extraordinary loss during Hurricane Andrew, Florida
implemented the first and only statewide wind code in the US in 2001. The code ensures
wind construction strength based on geographic location, and led to broad reductions in hur-
ricane damage on the peninsula in 2004 and 2005 (Done et al., 2018). Despite losses likely
within the lifespan of any home, and early success in Florida, Minimum building standards
and enforcement remains unpopular with many home builders and political agents in other
high risk areas (Simmons et al., 2020, Healy and Malhotra, 2009). Studies investigating the
effects of building code policy often focus attention on the individual, when their legitimiz-
ing public value may rest on spill overs across property. This study helps fill that gap by
considering the role of wind building codes externalities following Hurricane Michael.

Studies investigating the effects of wind code policy to date utilize insurance data aggre-
gated to zip code or larger, or small-n surveys. In both cases they have a limited ability to
casually identify impacts. Aggregate data also prohibits partitioning benefits of individual
building strength, from any that are derived from the construction of neighboring homes.
This study overcomes previous data limitations by generating a novel dataset classifying tarp
(tarpaulin) coverings in areal images taken 2-3 months after Hurricane Michael as a proxy
for roof damage. This approach exploits the recent US Army Corp of Engineers (USACE)
“Operation Blue Roof” which install tarps free of charge for any damaged residential roof
that qualifies after a storm.

We employ a regression discontinuity design (RDD) that identifies the returns of wind-
specific investments on housing damage in Bay County following the Hurricane. Our analysis
relies on plausibly exogenous change in wind-specific construction across a code implemen-
tation threshold in 2001, while confirming that other observable factors remain functionally
smooth across the same time period. In a fixed effects model, we search for externalities by
including the count of buildings under code within 100 and 500 feet of a home controlling
for other observable factors constant like wind speed, house age, height, taxable value, and
other neighborhood characteristics. Initial results show that homes constructed just after
the FBC reduced the probability of damages by 2 to 14% compared to those built just prior
during hurricane Michael. We also find significant evidence that the number of homes under
code nearby lead to lower damages during a hurricane. Together, findings suggest that wind
specific building strength matters, but that ignoring spatial dependencies could understate
the importance of public administration and enforcement of wind code policy.

The remainder of the chapter is organized as follows. Section 2 presents theoretical argu-
ments for building codes as a corrective policy in the face of underinvestment and spillover.
We discuss previous research on code effectiveness and research gaps in Section 3. Section 4
describe data collection followed by Section 5 discusses the paper’s empirical strategy, and
Section 6 present preliminary results. We conclude with a brief discussion of issues and im-
plications. Appendix A contains auxiliary regression results, and Appendix B steps through
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the remote sensing techniques used to measure covered roof damage in areal images.

2 Two Building Code Effects

Building codes have been in use in the United States for over 100 years (Dehring, 2006b).
Discussed by Dumm et al. 2011 and (Dehring, 2006a,b), the imposition and enforcement
of residential building codes are justified for two primary reasons: to correct for individual
homeowner-homebuyer information asymmetries including behavioral factors and insurance
market inefficiencies, and to correct for externalities that threaten adjacent property. In this
way, wind codes aimed at preventing hurricane related damage should draw their justification
through both individual and externality mechanisms, and that a focus on individual effects
only might under-emphasize the importance of collective action.

2.1 Individual Effects

According to NOAA, southeastern coastal US counties expect a hurricane with winds greater
than 74mph every 5-16 years depending on location (NOAA, 2018). With hurricanes likely
during the lifespan of any home, we would further expect private individuals in the south-
east to protect their assets though wind strengthened construction. This however does not
appear to be occurring, or to the level at which is necessary to protect against major residen-
tial losses from storms like Hurricane Andrew (Fronstin and Holtmann, 1994),Sandy (Kunz
et al., 2013), and Katrina (King, 2013). While climate change and building cost are com-
monly cited and important to consider, key theories of information asymmetries, behavioral
biases, and moral hazard play an important role in individual underinvestment. In addition,
there is mounting evidence that exceptional hurricanes like Andrew are exacerbated by cli-
matic change (Emanuel, 2005, Knutson et al., 2010), and that today’s storms might not be
fully capitalized into construction behavior in years past.

While climate change is an important part of the story, billion-dollar residential property
loss has been a growing and documented problem in the southeast US since the turn of the
20th century (Pielke and Landsea, 1998). Climate change helps explain the rise in the con-
sequences of underinvestment, but only partially explains underinvestment itself that stems
from information asymmetries and risk perception. That is, homebuyers may be unaware
of the property risk associated with extreme weather (Pope, 2008, Fronstin and Holtmann,
1994), may not possess the technical expertise to assess the structural integrity of their
home (Dehring, 2006b), or if so, might not know if additional investment will withstand
future storms (Neumayer et al., 2014, Bubeck et al., 2013).

Even when full information is made available, individuals in laboratory settings tend
to misinterpret the cognitively complex probability of extreme events, myopically discount
the future benefits of mitigation, and procrastinate when mitigating low-probability, high
consequence events (Meyer, 2006). Surveys confirm that individuals who correctly estimate
the probability of their homes being affected by Hurricane Isaac and Sandy, expressed little
concern over damage, and only 25% of the 593 respondents took protective measures against
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the storms (Meyer et al., 2014), and that underinvestment becomes larger as the individual’s
expectation of extreme events declines (Neumayer et al., 2014).

Actors may logically forgo protection if the cost of construction is higher than expected
mitigated losses, however this calculus should typically encourage investment in coastal
counties. Examining aggregated insurance data from Florida, the average individual claims
ranged from $10,800 in the case of Hurricane Irma, to $65,890 after Michael (Schmidt, 2020)
and $10,089 across all hurricane losses from 2001 to 2010 (Simmons et al., 2018). In compar-
ison, the cost of wind strengthening a wooden home to withstand Irma’s maximum winds of
130 mph and associated flying debris range from a 2.57% to 3.93% increase in the average
price of a comparable home without wind protection, or $5,499 to $8,410 for the median
Florida home.1 2 Likewise, building to withstand 150 mph winds and associated debris seen
during hurricane Michael ranges from a 3.33% to 4.94% increase in the price of construction
or $7,062 to $10,571. Lesser designs, built to withstand 100-120 mph winds can add as little
as $0.23 per sq. foot, or a 0.51% price increase over comparable homes (Applied Research
Associates Inc, 2002). A thin but growing benefit cost literature finds that building to higher
wind standards would be cost effective in many other coastal states outside of Florida like
Alabama, Georgia, Mississippi, and Louisiana among others (Simmons et al., 2020).

Insurance can serve as an efficient tool in shaping mitigating behavior in theory. How-
ever, an insurance market does not necessarily reduce individual damages unless premiums
are conditional on physical protection. In practice, research suggests that reductions in
premiums do not fully reflect individual investment because of transaction costs associated
with private home inspection, program design, and administration (Kunreuther, 1996, Fron-
stin and Holtmann, 1994, Neumayer et al., 2014). Some argue that insurance encourages
riskier structures to be built by guarding against the financial losses of extreme weather—–
presenting a classical moral hazard (Fronstin and Holtmann, 1994, Neumayer et al., 2014).
When inexpensive transportation and improved weather forecasting are available, individu-
als might rely on evacuation over costly structural improvements knowing that losses will be
covered and that risks to their life are increasingly low (Sadowski and Sutter, 2005). Moral
hazard might also extend to individual expectations of federal aid, or “social insurance”, as
a substitute for planning and property protection (Davlasheridze and Miao, 2019, Raschky
and Weck-Hannemann, 2007).

Standardized, strictly enforced, wind building codes based on best science should in the-
ory remedy underinvestment brought on by information asymmetries, behavioral biases, and
moral hazard by ensuring investment that would not have occurred otherwise. The premise
of this paper is that if any of the aforementioned conditions lead individuals to underinvest
in wind protections, we would expect to find significant differences between wind damage
to homes under code and homes built in an unrestricted market after a hurricane event.
However, if private individuals already adapt to sustain hurricane winds, codes designed to

1Based on 2013-2017 American Community survey median Florida home value
2Price ranges listed include impact coverings such as storm shutters as the most cost-effective means to

mitigate debris risk. Impact glass as an alternative option to shutters, can more than double costs.
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withstand similar wind speeds should have no meaningful effect.

2.2 Spillover Effects

An individual’s decision to invest in wind protection may not be felt in isolation, rather
their investments could spill over to neighboring individuals. This is made possible through
what Silva, Kruse, and Wang (De Silva et al., 2008) call the “debris effect”. Much like the
role that airborne particles play in transmitting disease, physical surveys commonly suggest
that windborne debris from adjacent properties compound wind damage (Coch, 2015, Gin-
ger et al., 2007). Through simulations and controlled settings, the engineering literature
is also very clear that hurricane damage is co-determined by wind strength and associated
flying debris from adjacent structures(Lin and Vanmarcke, 2010). However, it is unlikely
that individuals take these effects into account when building or purchasing their homes.

Take for example a home near the coast in southeastern US. Homes surrounding it, built
to withstand high winds, might serve as an effective barrier from wind and airborne debris
(regardless of the construction quality of the individual home under consideration). Alter-
natively, poorly constructed homes nearby would make for ineffective barriers, and could fall
or break apart and cause damage. Under this classic scenario, strong neighboring homes
provide a (free) benefit to others. This condition also means that if, based on individual
preferences neighbors do not invest in wind hardening, but would have were they able to
receive compensation for residual benefits provided to others, the decision to not invest is
socially suboptimal and the additive benefits from protecting capital is left on the table.3

Some argue that formal policy to correct the welfare loss described above is not necessary
if transaction costs of negotiating are very low (zero), and property rights—in the form of
benefits to others from improvement—are perfectly known. In the current example a market
solution would however require negotiating with some unknown number of neighbors about
building stronger homes under a perfect understanding of how and to what degree their
investment brings benefit to others. Since both conditions are nearly impossible to satisfy, a
common policy solution imposes collective investment within the area whose property values
are spatially dependent through some institution, agreement, or building code. If policy is
implemented such that the marginal benefit gained from collective action remains higher
than the marginal cost of the policy, social welfare increases under most scenarios.4 Typical
examples of successful policy targeting spillover include neighborhood associations and zon-
ing laws, but broad wind code administration and enforcement are likely to have analogous
welfare affects (Dehring, 2006a).

3There may also be concerns over free riding by extracting benefits from others, but deliberately avoid
payment or investment themselves. While a theoretical possibility, it seems unlikely that individuals would
have the information necessary to weigh their own risk tolerance relative to the structural investments made
to adjacent properties.

4A full discussion on the theoretical costs to code implementation and enforcement are outside the scope
of this paper. A good overview of code costs can be found in (Listokin and Hattis, 2005)
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3 Literature

Only a handful of observational papers have attempted to link building code adoption to
hurricane damages, in part because very few local governments have imposed codes, and
granular loss data is difficult to obtain. Fronstin and Holtman (1994) identified that the
slow degradation in building standards likely translated to lower building quality and in
turn higher damage in newer south Florida subdivisions after Hurricane Andrew. In a
widely cited series of papers, Simmons, Czajkowski and Done 2018, and Done, Simmons and
Czajkowski (2018) find up to 68% reductions in damages for homes built under the FBC
compared to their pre-FBC counterparts during the 2004 to 2005 hurricane season.

Smaller-n (typically <1000 observations) ground surveys such as those found from the
Structural Extreme Event Reconnaissance Network (StEER) employ UAV’s ground survey
techniques, and vehicle mounted cameras to document incredibly detailed damage. Prevatt
and Roueche (2019) descriptively analyzed Hurricane Michael StEER data and found that in
almost all wind speeds and damage types (eg. roof, siding, etc.) post-FBC homes displayed
less damage than those built prior to the code, and observed very few roof failures in homes
under code compared to 1-in-5 failures with non-FBC homes. In a similar analysis, Gurley
and Masters (Gurley and Masters, 2011) collected 126 surveys asking residents subjected
to Hurricanes Ivan, Frances, Jeanne, and/or Charley in the 2004 season to indicate housing
and roof damage estimates. Sorting into pre- and post- FBC requirement, the authors found
that 15 percent of homes built under the FBC indicated greater than 5 percent roof damage
while 51 percent of those built from 1991-2001 reported greater than 5 percent damage. An
extensive engineering literature has also described wind debris damage dynamics and the
importance of building strength through simulated data, and laboratory experiments (see
(Minor, 1994) ).

The observational studies above contributed heavily to the creation and justification of
Florida’s modern-day wind policy, but all were necessarily estimated using development,
census tract, or zip code level data. If any omitted variables are correlated with included
variables and impact damages within groups, bias could threaten valid inference. (Simmons
et al., 2018) employed a discontinuity-like process to search for the optimal way to include
housing age in their regressions, but their zip code-decade loss data did not allow for a full
RD design. On the other side of the spectrum, engineering literature using simulated data,
and sterile laboratory experiments have limited external validity (see (Minor, 1994)). In the
way of externalities, Silva, Kruse, and Wang (2008) searched for and found that tornado
losses in Oklahoma were spatially correlated. Similar effects have been hypothesized about
the hurricane environment and that building codes might attenuate these effects but have
yet to be empirically tested (Dehring, 2006a).
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4 Data

To test for individual and spillover affects of wind protections we turn to Bay County,
Florida where on October 10th, 2018 Hurricane Michael made landfall as the first Category
5 hurricane to strike the US since Hurricane Andrew in 1992. The size of Bay County also
affords this study a good deal variation in wind exposure, damage and building code takeup.

4.1 Physical Attributes

Building footprints were provided by the Bay county GIS department, and sorted for single
family property by spatial intersections with assessor’s data. Building footprints provide
the general size and position of a home, while assessors data contain relevant structural
characteristics like year built, heated area, taxable value, number of stories, and number
of bathrooms and bedrooms. The full dataset of all buildings and building types contains
115,175 observations total, 69,431 of which are single family properties. 5,497 observations
were dropped because they did not report an assessed value or were valued +/- $1m/$50k.
8,373 properties were dropped because there was no building structure on the parcel desig-
nated as single family or the building footprint was dramatically misaligned with building
structures.5 An additional 5,059 properties were dropped if larger than 10,000 square feet or
missing information on the year built, ground elevation, the number of bedrooms/bathrooms
or stories. After cleaning, the analyzed dataset comprised of 50,502 single family homes.

4.2 Building Code Treatment

Since 2001 the Florida State Building Code (FBC) has required new construction to incor-
porate wind strengthening measures such as hurricane straps and approved shingles designed
to maintain roof integrity under extreme wind loads. In addition to wind protection, some
homes were also subject to wind debris requirements that called for impact resistant mate-
rials such as storm shutters and impact resistant glass and doors. In Bay County, all homes
constructed after 2001 were required to adhere to the wind strengthening. Homes constructed
farther than 1 mile from the coast received exemptions from wind debris requirements (until
2006 when the exemption was lifted), while homes within 1 mile of the coast were required
to follow wind resistance and wind debris requirements. It is also important to note that
construction within 100 feet from the coast were subject to the Coastal Construction Con-
trol Line (CCCL), and those located within 1500 feet from the coast adhered to the Coastal
Building Zone (CBZ), both of which were in place well prior to 2001 and may confound the
construction quality counterfactual (Yazdani and Kadnar, 1993).

We also split the full sample into 2 additional subsamples. The first contains all homes
built inland farther than 1 mile from the coast. The second sample contains homes built
less than 1 mile but greater than 1500 feet from the coast. In this way, we include homes

5Damage data, discussed further below, is contingent on building footprint vectors aligning with the home
itself in an image. Footprint vectors in this analysis were either hand drawn by Bay County, collected from
open street maps project, or Microsoft’s footprint project—all of which are subject to human, or model error.
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subjected to strengthening and debris requirements but omit those that might fall under con-
founding historical building restrictions for beachside homes. Omitting homes within 1500
feet also avoids systematic differences in construction on account of their coastal proximity
compared to the broader population. Observations in both the split and the full dataset are
considered treated if built after 2001 or in the baseline otherwise. We also assign the total
the number of buildings within a 100 and 500 foot buffer that were built after 2001, and the
number of buildings within a 100 and 500-foot buffer.

4.3 Covered Damages

This paper employs an original dataset describing the existence of tarpaulin nylon (”tarp”)
coverings emerging 60-90 days after Hurricane Michael made landfall in Bay County as an
indicator of housing damage. The presence of emergency roof covering provides a reasonable
proxy for housing damage for several reasons. During a wind event, roofs often receive a
large bulk of the damage. Repairs can take time, and depending on insurance claim pro-
cessing, cleanup efforts, contractor availability, and building supplies, a homeowner typically
waits months, or in some cases years, for full restoration. In the interim, homeowners are
incentivized to waterproof their roofs with tarps to avoid additional rain damage to drywall,
electrical and flooring. Aside from roof specific damage, tarp coverings may also indicate
envelope and internal damage as a result of airborne debris strikes. That is because once air
from outside enters a home, upward pressure on its roof can double, resulting in a higher
chance of failure (Applied Research Associates Inc., 2002).

Exploiting tarp cover as a proxy for damages is made additionally reliable through the
“Operation Blue Roof” program. Started by USACE in 2004, and fully in effect during the
Hurricane Michael recovery, the blue roof program allows the Army Corp to install tarps free
of charge for any damaged residential roof so long as properties had less than 50% structural
damage and inhabitable after covering. Priority is given to single family homes with shingle
roofs, but mobile homes and other roof types are considered on a case by case basis. While
individuals may choose to cover their roofs on their own, the Blue Roof Program helps insure
that covered damages used in this analysis are not based on access, financial, or physical
limitations.

Tarp identification was made possible using high resolution areal imagery provided by
request from Bay County’s GIS department. The data is comprised of several hundred ortho-
rectified images collected via aircraft in January of 2019 with a spatial (pixel) resolution of
3 inches for the entire 1,033 square mile county. To convert the images into useful physical
quantities we first clip them by known building footprints to generate a set of pixels known to
exist as roof cover before the storm. We cluster the select pixels based on k-means sampling
and model the probability that each cluster is a tarp, based on variation in brightness of
the cluster’s 4 bands–—red, green, blue, and near infrared (NIR). For example, if a cluster
reflects strongly in blue, and low in red, it is likely to be a tarp. For the purposes of this
paper, we recover a binary indicator 1 if the predicted probability of a parcels containing tarp
is > 0.5 and 0 otherwise (Figure 1). A deeper discussion of the remote sensing techniques
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explored to classify the Bay County imagery can be found in Appendix B.

Figure 1: Tarp Classification

4.4 Hurricane Michael Wind Exposure

Spatially explicit wind intensity data was taken from proprietary Hwind data purchased
from Risk Management Services (RMS) and intersected with Bay County building foot-
prints in ArcGIS. Hwind represents the sustained maximum sustained 1-minute wind speed
experienced at 10 meters above ground level as modeled from weather station readings and
other meteorological data. Hwind (hereafter referred to as wind speed) is a gridded product
providing a spatial resolution of 6km and is heavily cited in engineering and meteorological
studies.6 The maximum 1-minute sustained wind in the data ranges from 75-150 miles per
hour within the Bay County study area with mean of 114 miles per hour (see Table 1).

5 Empirical Strategy

We apply two empirical approaches. The first is a regression discontinuity design (RDD),
which under the assumptions discussed below recover the causal impact of building code
treatment on the probability of roof damage. However, because code density around a home
is not strictly determined by an observable threshold in the data—–that is, being built
after 2001 is necessary, but not sufficient condition for treated neighbors—We propose a
probit model that estimates the spillover effects of nearby coded homes on the probability
of damage, after carefully controlling for other factors that determine damage and spatial
autocorrelation among observations.

6See for descriptions of Hwind Data products, and for a list of peer reviewed papers utilizing HWind.
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Table 1: Tarp Classification

5.1 Estimating Individual Effects

An RDD design here seeks the causal effects of building codes on housing damage by estab-
lishing a counterfactual from untreated homes just prior to implementation. As discussed
above, the Florida Building Code was administered using strict implementation rules, or
cutoff year ci. In this analysis ci refers to homes constructed in or after 2001. The identi-
fying assumption is that, besides treatment, all other damage-determining qualities about a
home vary smoothly across ci. Meeting this assumption is theoretically tenable since ci was
selected by a punctuated and random political process while housing qualities change slowly
over time and space. Expanding from the basic RD design (Jacob et al., 2012, Imbens and
Lemieux, 2008), We estimate the following model for home i constructed in year r:

YiDamage = β0Codei + β1Codei × (ri − ci) + β2(1− Codei)× (ri − ci) + δX ′ + ϵi (1)

Recall that dependent variable, tarp covered damage takes on a 1 for any covered dam-
age in home i in zip code j or 0 otherwise and estimate as a linear probably function. The
estimator of interest is Code, an indicator that takes on a 1 if home i was constructed after
the code threshold ci, and 0 otherwise. We center construction year by threshold ci so that
discontinuity occurs when (ri − ci) = 0 and include separate trend terms β1 and β2 such
that β1 = β2 if trends are identical above and below ci. Unequal slopes are a reasonable
functional addition, considering that the impacts of housing age on damage likely depends
on housing quality enhanced by the code.

If treatment is determined exactly by construction year r, and all construction is forced to
comply, the “sharp” discontinuity observed in equation 1 should recover the average causal
effect of the building code on compliers. However, if individuals or contractors illegally avoid
adopting the FBC (never takers), take up protection before the code (always takers), adopt
it partially, build to the code incorrectly over some period, or even build riskier structures
in protest (defiers), we would not expect treatment for all construction at ci. Either of
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these circumstances would likely attenuate the expected negative affect of code on damage,
therefor equation 1 remains conservative and policy relevant in the context of Bay County
population and will be presented with this caveat.

We estimate the models above using both local linear and global parametric specification.
The local linear approach limits the bandwidth observations just before and after the policy
threshold where the effects of construction date on damage is likely linear. As bandwidth
widen from the threshold, more observations offer additional precision, but tradeoff with
potential bias if housing age is correlated with unobservables. We use a common cross
validation technique to narrow the bandwidth to the point that linear mean square error
(MSE) becomes less than a higher order polynomial for the same model on each side of the
threshold. Depending on the sample (Coastal, inland, or full) this process suggests that 4 to
7 years is the optimal bandwidth size on either side of the threshold.7 For this analysis we
select a 6-year bandwidth for consistent comparison across samples, and because after 2006
there were additional policy changes that could theoretically confound results in a 7-year
bandwidth. Results (not reported) generally held when bandwidths were doubled but were
not significant when halved in size. We estimate the local regression using a triangle kernel
that weights observations according to their distance from the policy threshold. The usual
global parametric (OLS) approach includes every observation in their respective samples.
We allow for different slopes on either side of the policy threshold and report effects without
covariates, with all covariates, and with all covariates and zip code fixed effects.

5.2 Estimating Spillover Effects

The goal of this model is to estimate the spillover effects of building codes on single family
housing damage, holding constant all other factors that determine damage. Provided this
is the first paper of its kind related to wind code policy, we turn to the health economics
literature for identification strategies. A particularly compelling specification comes from
Edward, Miguel and Kremer (2004) who looked at the effects of deworming treatments in
Kenya on the health outcomes of treated schools, as well as the spillover effects of the treat-
ment status of nearby schools on their neighbors. Using school level health, outcomes took on
a binary 1 when “any moderate-heavy infection” was found and 0 otherwise. In addition to
the treatment status of individual schools, the authors include the number of treated schools
within 3 and 6 km and the total number of schools within 3 and 6 km. In this way they
recovered the independent effects of students treated nearby holding general transmission
effects fixed.

Analogous to a bacterial infection in humans, hurricane damages likely “transmit” from
home to home via airborne debris. The overall density of buildings may increase the chances
of damage (infection) or second impact damage (reinfection). As with the effects of a drug,
we would expect transmission to reduce as nearby homes are treated with stricter building
codes. To test for these effects, We estimate a second equation (3):

7Standard selection in the rdrobust package in R following (Calonico et al., 2014)
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Yij = β0 + β1Tij + β2Wij + β3Tij ×Wij +
∑

γNT
bd +

∑
δNbd +X ′

i + ρj + uij (2)

Where Yij remains a binary indicator for covered damage of home i in zip code j and
estimated probit. Tij represents the building code treatment that home i is expected to
take based on its construction date and geographic location. Wij is the maximum 1 minute
sustained windspeed experienced by home i. The interaction between code treatment and
windspeed controls for any heterogeneous effects that tratemnt has on damages across a
range of wind speeds. Alternatively interpreted, β3 recovers the effects of windspeed on
damage, depending on what treatment alternative home i is constructed under.

NT
bd is the number of buildings b treated buildings within distance d, and Nbd is the total

number of buildings b within distance d. In this study, d takes on a value of either 100 feet or
500 feet.8 Subscript b is used instead of i to reflect the fact that all building structures (e.g.
commercial, multifamily) are considered in this summation, not only single-family homes in
the sample.9 The effect of an additional nearby buildings being treated are captured by γ,
controlling for any independent effects of housing density δ.

Since treatment Tij varies by year built and distance from the coast they are likely
correlated with construction characteristics also sensitive time and space. To the extent
construction characteristics are correlated with damages, estimates will be bias in unknown
ways. For example, homes built next to the coast contain large panel windows to improve
view. If not properly reinforced, the unique window construction could increase the homes
risk of wind damage. The same home might have additional protections or innate quality
built in simply because of its location. We include a vector of individual property charac-
teristics X ′

i to control for differences in construction quality indicated by age of the home,
number of stories, footprint size, building area, and taxable value.

Similarly, spatial autocorrelation can introduce bias when the features of one observation
influence the features of other observations to take on similar characteristics (F. Dormann
et al., 2007). This correlative relationship violates idiosyncratic error assumptions and may
be apparent in this work through the size, style, and quality of a home directly affecting
similar features of their neighbors. Kuminoff et al. (2010) argue that the use of spatial errors
and spatial lag techniques used to purge models of omitted variable bias and autocorrelation
have become “stylized facts” in housing models. Through a series of Monte Carlo replications,
Kuminoff et al. (2010) find evidence that various levels of spatial fixed effects most efficiently
control for bias. Following their convention, we include zip code level fixed effects ρj and
individual errors uij clustered at the zip code level.

8The distance of 100 and 500 feet was selected to capture the effects of immediate neighbors in a typical
suburban setting (100 feet), as well as a typical neighborhood block (500 feet).

9The effects code regulation impacted commercial and multifamily structures as well. Therefore, while
this is an examination of benefits to single family homes, externalities from all buildings are considered.
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6 Results

6.1 Individual Estimates

Illustrated in Figure 2 all samples report a discontinuity in damages across the policy thresh-
old. Estimates report a reduction in the predicted probability of roof damage ranging from
2.6 percent in the full sample under some parametric models (Table 2), to 13.9 percent in
local linear models of coastal properties (Appendix A, Table 5). The local linear models es-
timated using all observations (Top left panel in Figure 2 and Figure 2), suggest a treatment
effect of a 4.4 percent reduction in the probability of damage. All models are statistically
significant except for the local linear model estimated from our inland sample.

Figure 2: Local Linear (Left) Linear Parametric (Middle) and Polynomial Functions (Right)

The internal validity of both global and local techniques rests on the crucial assumption
covariates are functionally smooth across the policy threshold such that observation just
prior offer a reliable counterfactual to those just after. Figure 3, Figure 4, and Figure 5
in Appendix A plot the average values of each covariate in full, inland and coastal samples
respectively by construction year while a horizontal line marks the 2001 policy threshold
as usual. In the full sample (Figure 3, Appendix A), homes built just after the threshold
seem to experience slightly lower winds on average. However, this discontinuity is alleviated
somewhat in more geographically specific samples described in Figure 4, and Figure 5. There
is also a “kink” in housing density (number of homes within 500 ft of a home) in the full and
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coastal samples, and a general drop in density after the threshold for inland homes. Struc-
tural variables like area, bedrooms, and bathrooms appear to be in stable, upward sloping
trends.

Table 2: Local Linear and OLS results (sharp design): Full Sample

6.2 Spillover Estimates

Model 1 in Table 3 provides baseline estimates on individual treatments only. Models 2 and
3 describe individual and externality effects of homes under code within 100 and 500 feet
respectively. Models 1-3 include housing controls and zip code fixed effects. All coefficients
are presented as the marginal effects on the probability of damage holding all other covariates
at their means, along with standard errors in parenthesis. Windspeed is mean centered, and
the main effects of the wind speed-policy interactions should be interpreted as the effects of
treatment at mean wind exposure (114 mph in our data). Note that some coefficients have
been scaled for interoperability indicated in parenthesis.

The effects if individual treatment without considering externalities (Table 3, Model 1)
is negative and significantly different from zero. This suggest that when hurricane winds are
at their mean, the probability of roof damage for a treated home is 7.3 percentage points
lower than uncoded homes. The positive and significant sign on the interaction between
windspeed and treatment suggests that the damage saving effects of treatment are reduced
by 0.8 percentage points for every 10 miles per hour increase in sustained wind speed.

Following Model 2 and 3, the probability of damage significantly increases as the number
the buildings within 100 and 500 feet of a home increase, but for every building treated
within those bands, the estimated probability of damage is reduced by roughly the same
amount or more. To conceptualize the impacts of externalities, consider a scenario in which
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Table 3: Probit Model Results

there are uncoded buildings nearby, compared to some proportion of those buildings are
under code. The median number of buildings within 500 feet of a home in the data is 50.
Holding all other factors at their mean, 50 untreated buildings within 500 feet increases the
probability of damage by 5 × 0.004 – 0 × 0.009 = 2.0 percentage points. If 10 out of the 50
buildings are treated (the mean in the data), the probability of damage from the same 50
homes is 5 × 0.004 – 1 × 0.009 = 1.1 percentage points, or a marginal reduction in damage
of 0.9 percentage points. Treating roughly half of the surrounding buildings would flip the
positive effects of building density on damage altogether based on the model.

It is important to note that the effects of individual treatment status in Model 2 and
3 in Table 3 are noticeably smaller than estimates in Model 1 suggest without externali-
ties. For example, Model 1 estimates that the impact of individual treatment status is 2.4
percentage points larger (more negative) that in Model 2. This finding suggests that the
treatment status of a home is positively correlated with the treatment status of buildings
nearby. A Pearson test confirms that the correlation between the individual treatment and
treated buildings within 500 feet is 0.53. Since the probability of damage is negatively related
to treated buildings nearby, and the treated buildings nearby is positively correlated with
individual treatment, individual treatment effects in Model 1 are biased downward (more
negative) when terms describing neighboring treatment is unobserved.
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7 Discussion

This study contributes to the literature by recovering some of the first casual impacts of wind
codes on roof damage during category 5 hurricane event, and the first large-n observational
evidence of a long-standing theory that individual homes benefit from wind-resistant invest-
ment of their neighbors. This positive externality is likely achieved by reducing airborne
missiles and debris that otherwise render individual building decisions less important. From
a policy perspective, externalities found here suggest that the public administration and en-
forcement on building requirements may be just as important to the protection of individual
property as any single individual’s construction decisions. While wind codes in Bay County
and other regions of Florida have decidedly imposed community wide code, other states,
counties, and local governments concerned with individual liberties should be reminded of
these welfare increasing effects.

From an empirical perspective, past and future research investigating the individual bene-
fits of building code may be biased to the extent that homes built under code cluster together
or are spatially correlated. Given that homes are often built in developments, this is very
likely. Studies that find large individual benefits associated with building codes may be mis-
attributing part of those benefits to individual construction when instead protections stem
from the higher probability that nearby properties are also built under code and minimize
airborne debris related damage.

Note that estimates have just as much to do with the quality of existing building coun-
terfactual in Bay County prior to the FBC as it does with the code itself. That is, we might
not expect the same results to emerge from a state or county with a stronger history of self
imposed building quality prior to enforcement. While our RDD design offers a careful, mag-
nified view of code treatment effects, the applicability of its results to other regions should
be thought through carefully. Results only apply to similar hardening investments made to
early 2000’s style construction in the southeast coastal US. Without further investigation,
result may not describe retrofit policies, nor for homes constructed in future decades with
advanced materials and practices not tested here. It is also not clear if these results will hold
as homes age and become re-exposed to wind hazards.

With respect to measuring damage, there are bound to be individuals who refuse or
cannot cover their roofs, receive wind losses not indicated by roof damage, or manage to
repair their roofs sooner than the imagery used in this analysis was acquired. As mentioned
in the empirical section of this paper, its likely that tarp cover represents wide range of
damage depending on personal preferences and unobserved constraints. Similarly, there is
no reason to cover a structure that is completely destroyed or as good as destroyed. For
these reasons this study is limited to estimating effects on the extensive margin from no
covered damage, to some low-moderate levels of damage. It says nothing about treatment
effects on the intensive margin, or preventing a complete loss.
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Table 4: Local Linear and OLS results (sharp design): Inland Sample

Table 5: Local Linear and OLS results (sharp design): Coastal Sample
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Figure 3: Covariate function across policy threshold: Full Sample
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Figure 4: Covariate function across policy threshold: Inland Sample
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Figure 5: Covariate function across policy threshold: Coastal Sample
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Table 6: Probit Model Control Variables

Appendix B. Classification

Remotely sensed data, a simple picture, does not alone provide very meaningful quantitative
information. In the current example, we might look at post-hurricane imagery and conclude
that damage is present based on what we see. We might also successfully assess the percent
damage to an individual home, or a few homes in our study manually. But, what about
damage to every home in the image? As our study grows larger across space and/or time
to include thousands, or millions of observations, the ability for one or multiple persons to
generate accurate and consistent measures of damage to individual homes quickly diminishes.

One common solution in physical and social sciences is to convert an image into interesting
land cover categories. To accomplish this, we model the probability of what that object is
based on variation in the intensity of n bands of light being reflected. For example, we might
want to predict grass pixels in an image given red, green, and blue intensity as independent
variables. Here we might model grass as:

Grass = Pr(Grass|Red,Green,Blue) (3)

Where grass is either grass (1) or not grass (0), and red, green, and blue are given on a
(0-100%) percent reflectance scale, or “digital number” representing the raw voltage reported
at a sensor, commonly 0-255.
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We might also exploit additional bands of light not visible to the human eye, but col-
lected by modern sensors such as near infrared, ultraviolet etc. Akin to including additional
right-hand-side variables to explain some social phenomenon, the more bands sensed, the
more variables, and thus information we have to make a successful prediction. Spectral
signatures of common lab tested materials are given in Figure 6. The horizontal axis is
wavelength (in nanometers) of energy reflected from respective objects, and the reflectance
across wavelengths on the vertical. While reflections across the spectrum are continuous,
intensity/reflectance in images are averaged into discrete bands. From left to right, blue is
represented by the first shaded area (400-500nm), green in the second (500-600nm), red in
the third (600-700nm) and near infrared (NIR) as the fourth band (800-900nm).

Figure 6: Spectral Characteristics of Common Urban Land Covers

Source: UCSB Spectral Library (See Roberts and Herold (2004) and Herold et al. (2003))

As we might expect, grass (line 7 in Figure 6) reflects strongly in the green band, and
poorly in blue and red (see Roberts and Herold (2004) and Herold et al. (2003)). Also note
grass has an extremely strong reflectance in the NIR band relative to other land cover types
in the figure. This heterogeneity makes grass quite predictable or identifiable in land cover
classification studies, especially with an urban backdrop represented by the remaining signa-
tures in the figure. Unfortunately, remaining urban land covers in Figure 6 are much more
spectrally homogeneous. In the current study, and others like it focused on urban damage,
identifying an undamaged roof vs. damaged roof characterized by an unpredictable mix of
building materials, wood, dirt etc. is challenging in theory and in practice.
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Sensing Tarp Cover

After a major hurricane, such as Michael, major repairs depend on the speed of insurance
claim settlements, the local labor market, and other factors. Accordingly, it typically takes
months, and in extreme cases years, for damaged roofs to be repaired. To mitigate leaks in
the interim, homeowners commonly cover roof damage by polyethylene tarpaulin “tarps”.
As damage increases, large, purpose-built tarps bought locally or provided by government
relief services protect the underlying home from additional water damage.

This study targets the presence of tarps roughly 8-12 weeks after Hurricane Michael as
a proxy for roof damage for two reasons. First, physical damage leading to leaking roofs
might be present at a scale impossible to detect using imagery collected immediately after
the event. However, homeowners are likely to apply tarps on isolated sections of roof, how-
ever small, to prevent leaks. Second, tarps provide a great deal of spectral heterogeneity
with respect to roofing and other urban materials. In Figure 7 tarps in a laboratory setting
reflect strongly in the blue spectrum, and interestingly, in NIR. Also note that the overall
reflectance% of the tarp in all bands is higher than most other urban covers in Figure 7, as
it is simply a brighter material.

Figure 7: Spectral Characteristics of Polyethylene Tarpaulin “Tarps”

Source: Salvaggio et al. (2005)

We do not assume tarps are blue a priori, but given that is a differentiating feature of
most tarps, this is likely to be built into the model implicitly without more sophisticated
methods. Based on lab generated signatures above (see (Salvaggio et al., 2005) it is also
intuitive that if an object reflects in blue, but also strongly in green and red, the object
might be concrete, tared roof or paved driveway on the fringe of an image. At the least,
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we might be less sure it is a tarp. Thus the impact of blue light intensity in an image ob-
ject on the probability of it being tarp cover depends on the reflectance levels of other bands.

We acquired high resolution areal imagery from Bay County, Florida’s GIS division. The
data were collected via aircraft January 2019 with a spatial (pixel) resolution of 3 inches
for the entire 1,033 square mile county.10 The imagery includes 4 bands—or variables—red,
green, blue, and NIR (see Figure 8) . The reflection, or intensity scale in each band pixel is
given in digital numbers (DN) ranging from 0 to 255. Note the darker (lower reflection) tarp
cover found in red (Image 1) and green (Image 2) bands, but brighter (high reflectance) in
blue (Image 3) and NIR (Image 4). 11

10The entirety of the dataset is roughly 1.5 TB and over 200 individual images.
11DN’s are raw readings of voltage at the sensor, and do no not account for different sensor angles,

atmospheric distortion, and irradiance (energy from the sun at some time /month). Some studies convert
DN to a unitless reflectance values for consistency and comparison with other images and times. However,
flight times and viewing angles per image are unknown to make these corrections. Further, minimum levels
of atmospheric distortions are present across aerial sensors opposed to satellites
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Figure 8: Individual Band Reflections (RGBN)

A critical component to image classification is the selection and processing of training
data. That is, for a sample of observations with n right-hand side hand variables discussed
above we must manually assign a “success” for the existence of some dependent land cover
variables, in this case tarp, roof, shadow, or other, and a “failure” if not. We randomly se-
lect 100 parcels to capture land cover heterogeneity across the image that might occur from
different building materials, shadows, sun exposure etc. Random selection also minimizes
the possibility of spatially correlated observations within the training set. Individual pixels
in high resolution imagery do not represent individual observations and are likely to have
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highly correlated errors with their neighbors leading to model bias and overfitting. That is,
the land cover of a 3-inch pixel is likely to be correlated with land cover adjacent pixels.
To create feasibly independent observations, we aggregate individual pixels into “objects”,
based on a mean shift algorithm that seeks to minimize the variance in in the data given
some number of arbitrary clusters. Visually represented in Figure 9, each new object takes
on the mean of all pixels in that cluster. Our unit of analysis for the classification is now
the object, which across all training objects have a mean of 547 pixels.

Figure 9: Aggregating Pixels into Objects Using Mean Shift Algorithm

We manually assign one of 4 possible land cover categories to each object found in 100
randomly selected building footprints to produce a training set of 434 observations. 170
observations are identified as roof, 149 as tarp, 24 as shadows, and 89 “other” which include
anything on the fringe of a poorly drawn footprint such as patio, grass, a car etc. (Table 7

Table 7: Training Data Summary Statistics
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There are many model choices for classifying image objects. Current research is pushing
the bounds of machine learning, artificial neural nets, and other various vector support
machines—many of which may be unnecessarily complex, or beyond the scope of our needs.
That said, estimating land cover using simple OLS would lead to bias and nonsensical results
as the dependent variable is categorically split into 4 different types of land cover with
no peculiarly meaningful order. This section proceeds by estimating a logistic regression
models to address binary versions of the dependent variable. In this way, we constrains the
probability of some land cover between 0 and 1 given as the inverse of log odds:

P (LandCover) =
exp(α + βX ′)

1 + exp(α + βX ′)
(4)

Where X ′ is a vector containing Red, Green, Blue and/or NIR reflections and Land
Cover predicted via maximum likelihood. In theory, we only need to be concerned with
predicting the existence of a tarp or not to the extent that building footprints are accurate,
and our assumptions about tarping damage hold. Any other remaining area in the imagery is
assumed to be undamaged roof, shadow, or some other undetermined land cover. Following
this we consider a logit model where:

Landcover(Tarp) =

{
1, if Tarp

0,Roof, Shadow, Other
(5)

Despite having four available bands, their values tend to be colinar since each represent
discrete averages taken from the full electromagnetic spectrum. This means that two bands
close together along the spectrum, such as blue and green, are likely to share more variance
than those that are further apart. Based on a simple covariance matrix (Table 8), all bands
in our training data are highly collinear, but blue-red, and NIR-red show lower correlations
than other pairs. Since it is impossible to add a third or fourth variable without introducing
correlation between variable above 0.6, I seek a simple model, likely with one or two variables.

Table 8: Covariance Matrix of Independent variable choices

Remote sensing literature commonly employs two or more bands to generate a single
index such as the normalized difference vegetation index (NDVI), the normalized difference
water index (NDWI), and many others to exploit variation in multiple bands, and avoid
collinearity issues. The NDVI for example is simply:

NDV I =
NIR−Red

NIR +Red
(6)
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Where objects that reflect strongly in the NIR and poorly in red, like vegetation—–and
it just so happens, tarps–—the NDVI produces high value which are conveniently scaled
between -1 and 1. We also consider a slight variant of the NDVI, which we’ll call the
Normalized Difference Tarp index (NDTI), that exploits variation between blue and red in
a similar way:

NDTI =
Blue−Red

Blue+Red
(7)

We tested 5 potential models based on theory and analysis discussed to this point. Each
model predicts the probability of tarp cover. Model 1 in Table 9 provides results with all
covariates for comparison. Model two contains red and blue as covariates, model three red
and NIR, model four NDVI only, and fifth NDTI only. All coefficients are in log odds.

Table 9: Regression Coefficients

Table 9 confirms that our estimators are statistically significant, except for NIR in the all
covariate model. The direction of effects is also what we might expect when detecting tarp
cover. Model 2 and 3 reveals that an increase in blue and NIR reflectance increases the log
odds of tarp cover, and that an increase in red decreases the log odds of tarp cover. Similarly,
the log odds of tarp cover increase as the NDVI and NDTI increase. Model 1 gives confus-
ing and counter intuitive results, most likely a symptom of multicollinearity discussed above.

To help choose a correct model, Table 10 gives three measures of fit. McFadden R2
calculates one minus the ratio of log likelihoods of a model with no predictors over one
with predictors. The higher the McFadden R2 value, the more variation the model explains
relative to a simple average probability of success (theta with no predictors). The Akaike
Information Criterion (AIC) is a similar measure of fit, but penalizes the model as additional
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Table 10: Fit Statistics Predicting Tarp Cover

parameters are included. Unlike McFadden R2, a smaller AIC is preferred over a large one.
Finally, the percentage of correctly predicted (PCP) observations is given for each model, as
well as the difference between PCP with a model and PCP with null model, which is 65.5

Model 1 (RGBN), with all variables, report the largest R2 and smallest AIC, but not
by a huge margin over model 2 (RB) that includes only red and blue as covariates. Sur-
prisingly, RB actually predicts more observations correctly than RGBN. Model 3 (RN) and
model 4 NDVI turned out to be a relatively poor predictors most likely since both tarp and
grass/trees respond strongly to those band combinations. Given this evidence, we select
model 2 as “best” model, which despite having slightly lower R2 and higher AIC, predicted
the most observations with only 2 variables. Additionally, the more parsimonious model
2 contains less multicollinearity (albeit not zero), than model one. Promising fit statistics
from the NDTI overall might suggest its usefulness under different model specifications or
in scenarios where tarps are not blue.

Transforming log odds to predicted probability, Figure 10 illustrates Model 2 along with
95% confidence intervals. When levels of red are held at their mean, the estimated probabil-
ity of an object being a tarp when blue reflectance is 150 is only 2.6%. But, an increase in
blue from 150 to 175, holding red at its mean, increases the probability that an object is a
tarp by 32.1%. At levels of blue reflectance at 200, the probability of cover is 91.1% holding
red refelctance of an object at its mean.
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Figure 10: Probability of Tarp Cover Given Blue Reflectance (Red Reflectance at Mean)

Note that logit models are non-linear and non-additive such that the effects of a unit
change in blue on the probability of tarp cover depend on the level of blue, as well as levels
of red. To illustrate, solid blue line in Figure 11 represents the marginal effects of blue
reflectance values on tarp probabilities holding red at it’s mean as before. Darker dashed
lines represent the same probabilities as red reflectance decreases from its mean, and lighter
dashed lines as red reflectance increases from its mean. Predicted probabilities thus become
higher faster when red reflectance is low but remain near zero for high levels of red. In
fact, when reflectance levels of red are two standard deviations above the mean, there is no
level of blue reflectance that yields a probability higher than 36%—far below any reasonable
threshold for positive identification.

Figure 11: Probability of Tarp Cover Given Blue Reflectance, for Various Levels of Red)
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